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1 Introduction

In many branches of applied mathematics, chemistry, physics and engineering, effi-
cient solvers of nonlinear problems are needed: in mass and heat transfer within porous
catalyst particles, some boundary value problems for integro-differential equations
appear that, after accurate discretization, Adomian decomposition or other techniques,
yield to a nonlinear system of equations (see, for example [1] and [2]). Also nonlinear
reaction-diffusion equations arise in autocatalytic chemical reactions (see [3]) or the
analysis of the electronic structure of the hydrogen-atom in strong magnetic fields
can be treated numerically, [4], by using iterative procedures for solving nonlinear
problems. In fact, the numerical treatment of some specific chemical problems can
help researchers to check their models of observable phenomena [5].

Efficient iterative methods are necessary for solving nonlinear Hammerstein inte-
gral equations arising from chemical phenomena. The following integral equation,
called COSMO-RS (see [6,7]), forms the basis for the conductor like screening model
for real solvent which appeared in chemical phenomenon:

μS(σ ) = R T ln

[∫
PS(σ ′) exp

(
− Eint (σ, σ ′) − μS(σ ′)

RT

)
dσ ′

]
,

where R is the gas constant, T is the temperature and the term Eint (σ, σ ′) denotes the
interaction energy expression for the segments with screening charge density σ and σ ′
respectively, the molecular interaction in solvent is PS(σ ) and the chemical potential
of the surface segments is described by μS(σ ) which is to be determined. The result-
ing chemical potentials are the basis for other thermodynamic equilibrium properties
such as activity co-efficients, solubility, partition co-efficients, vapor pressure and free
energy of solvation (see [8–11]. Quantum chemical effects like group-group interac-
tion, mesomeric effects and inductive effects also are incorporated into COSMO-RS
by this approach.

By using a particular discretization we can reduce the integral equation to algebraic
nonlinear system and we can solve it by any iterative method.

The best known iterative scheme for solving a nonlinear system of equations F(x) =
0 (being F : D ⊂ R

n → R
n), n ≥ 1 and the most used one, is Newton’s method. Its

iterative expression is

x (k+1) = x (k) − [F ′(x (k))]−1 F(x (k)), k = 0, 1, . . . (1)

where F ′(x) denotes the Jacobian matrix associated to function F . In last years, some
researchers in the area have developed higher order iterative procedures, trying to
improve the efficiency and applicability of Newton’s method. See, for example [12]
and the references therein. Some concepts related with these aims are described in the
rest of the section.

Firstly, we remember some known notions and results that we need in order to
analyze the convergence of the developed methods.

Definition 1 Let {x (k)}k≥0 be a sequence in R
n convergent to α. Then, convergence

is said to be
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(a) linear, if there exist M , 0 < M < 1, and k0 ∈ N such that

||x (k+1) − α|| ≤ M ||x (k) − α||, ∀k ≥ k0.

(b) of order p, p > 1, if there exist M , M > 0, and k0 ∈ N such that

||x (k+1) − α|| ≤ M ||x (k) − α||p, ∀k ≥ k0.

In the numerical tests, we will use the concept of approximated computational
order of convergence, that was introduced in [13] as follows

Definition 2 Let α be a zero of a function F and suppose that x (k−1), x (k) and x (k+1)

are three consecutive iterations close to α. Then, the approximated computational
order of convergence p estimates the theoretical order of convergence and can be
calculated by means of the formula

p ≈ AC OC = ln(||x (k+1) − x (k)||/||x (k) − x (k−1)||)
ln(||x (k) − x (k−1)||/||x (k−1) − x (k−2)||) .

In addition, in order to compare different methods, we will also use the efficiency
index, I = p1/d , where p is the order of convergence and d is the total num-
ber of new functional evaluations, per iteration, required by the scheme. Related to
this, Kung and Traub [14] conjectured that the order of convergence of any iter-
ative method without memory for solving nonlinear equations cannot exceed the
bound 2d−1, (called the optimal order). This conjecture was defined only for scalar
equations but it can be useful to classify the methods for systems and to select the
most efficient ones. Ostrowski’s method [15], Jarratt’s scheme [16] and King’s proce-
dure [17] are some of optimal one-dimensional fourth order methods, being Jarratt’s
procedure specially useful for the multidimensional case. The notation that will be
used in the proof of the main result of the convergence analysis was introduced in
[18].

The dynamical behavior of the rational function obtained by applying the fixed
point operator of an iterative method on a low degree polynomial gives us important
information about its stability and reliability. In this context, recently different results
have appeared in the literature (see for example [19–25]).

The rest of the paper is organized as follows: in Sect. 2, we introduce the parametric
family of iterative methods and show its local order of convergence. A dynamical study
of the parametric family is presented in Sect. 3, in order to see which is the relation
between the stability of a method and the value of the parameter. In the numerical
section, we apply different elements of our family for solving the nonlinear system
resulting from the discretization of the equation of molecular interaction. Finally, some
conclusions are established in the last section.
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2 The proposed family and its convergence

In this paper, we propose a one-parametric family of iterative methods, that can be
used for n ≥ 1, whose expression is

y(k) = x (k) − 2

3

[
F ′(x (k))

]−1
F

(
x (k)

)
,

x (k+1) = x (k) −
(

I − 3

4
A−1 B

) [
F ′(x (k))

]−1
F

(
x (k)

)
, k = 0, 1, . . . (2)

where u(k) = [F ′(x (k))]−1
(
F ′(y(k)) − F ′(x (k))

)
, A = I + ( 3

2 + β)u(k), B = u(k) +
βu(k)2

and β is an arbitrary parameter.
A known method appear in this family when an specific value of the parameter is

chosen; if β = 0, Jarratt’s scheme is obtained.

Theorem 1 Let α ∈ D be a zero of a sufficiently differentiable function F : D ⊆
R

n → R
n, n ≥ 1, in a convex set D with nonsingular Jacobian at α, and let also x (0)

be an initial approximation close enough to α. For any real value of parameter β, the
scheme defined in (2) provides fourth order of convergence, whose error equation is
given by

e(k+1) =
((

1 − 8

3
β

)
C3

2 − C3C2 + 1

9
C4

)
e(k)4 + O

(
e(k)5

)
,

where C j = 1
j ! [F ′(α)]−1 F ( j)(α), j = 2, 3, . . . and e(k) = x (k) − α.

Proof By using Taylor expansion of F(x (k))v and F ′(x (k)) around α,

F(x (k)) = F ′(α)
(

e(k) + C2e(k)2 + C3e(k)3 + C4e(k)4 + O
(

e(k)5
))

and

F ′(x (k)) = F ′(α)
(

I + 2C2e(k) + 3C3e(k)2 + 4C4e(k)3 + O
(

e(k)4
))

. (3)

Forcing [F ′(x (k))]−1 F ′(x (k)) = F ′(x (k))[F ′(x (k))]−1 = I , we get

[
F ′(x (k))

]−1 =
(

I + X2e(k) + X3e(k)2 + X4e(k)3 + O(e(k)4
)
)

[F ′(α)]−1,

where X1 = I and Xm = −∑m
j=2 j Xm− j+1C j , m = 2, 3, . . .. Then, the error

expression in the first step of the method is

y(k) − α = 1

3
e(k) + 2

3
C2e(k)2 − 4

3

(
C2

2 − C3

)
e(k)3

+ 2

3

(
4C3

2 − 4C2C3 − 3C3C2 + 3C4

)
e(k)4 + O

(
e(k)5

)
.
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Furthermore,

F ′ (y(k)
)
= F ′(α)

(
I + 2

3
C2e(k)+ 4

3
C2

2 + 1

3
C3e(k)2 + Y4e(k)3 + O

(
e(k)4

))
, (4)

where Y4 = − 8
3 C3

2 + 8
3 C2C3 + 4

3 C3C2 + 4
27 C4.

We get the Taylor expansion of u(k) by using (3) and (4):

u(k) =
[

F ′(x (k))
]−1 [

F ′(y(k)) − F ′(x (k))
]

= −4

3
C2e(k) +

(
4C2

2 − 8

3
C3

)
e(k)2 +

(
−32

3
C3

2

+ 8C2C3 + 16

3
C3C2 − 104

27
C4

)
e(k)3 + O

(
e(k)4

)
.

So, we can obtain

[
I +

(
3

2
+ β

)
u(k)

]−1

= I + 4

3

(
3

2
+ β

)
C2e(k)

+2

9
(3 + 2β)

(
(4β − 3)C2

2 + 6C3

)
e(k)2

+ 4

27
(2β + 3)

(
(8β2 − 12β)C3

2 + (24β + 9)C2C3 − 18C3C2 + 13C4

)
e(k)3

+ 2

81
(2β + 3)(144βC2

3 + 100C5)e
(k)4 + O

(
e(k)5

)
.

Then,

(
I − 3

4
A−1 B

)
[F ′(x (k))]−1 F(x (k)) = e(k)

+
((

1 − 8

3
β

)
C3

2 + C3C2 − 1

9
C4

)
e(k)4 + O

(
e(k)5

)
.

Hence, the error equation is

e(k+1) =
((

1 − 8

3
β

)
C3

2 − C3C2 + 1

9
C4

)
e(k)4 + O

(
e(k)5

)

and the proof is finished. ��
As this class of methods holds an infinity of specific procedures, it is necessary to

extract some particular cases. The criterium to do this must be of efficiency, in some
sense:

• When β = − 3
2 , the iterative expression becomes simpler,
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x (k+1) = x (k) −
(

I − 3

4

(
u(k) − 3

2
u(k)2

)) [
F ′(x (k))

]−1
F

(
x (k)

)
.

• When β = 0, classical Jarratt’s method is found,

x (k+1) = x (k) −
(

I − 3

4
[A]−1 u(k)

) [
F ′(x (k))

]−1
F(x (k)),

where A = I + 3
2 u(k).

• If β = 3
8 , the error equation is simpler,

x (k+1) = x (k) −
(

I − 3

4
[A]−1 B

) [
F ′(x (k))

]−1
F

(
x (k)

)
,

where A = I + 15
8 u(k) and B = Au(k) = u(k) + 15

8 u(k)2
.

These elements of the family can be, or not, the best ones. In order to have objective
criteria to select them, we introduce in the following section a dynamical analysis of
the family. This study will allow us to find the most stable and efficient elements of
the class.

3 Dynamical study of the family

Firstly, some dynamical concepts of complex dynamics that are used in this work are
shown (see [26]). Given a rational function R : Ĉ → Ĉ, where Ĉ is the Riemann
sphere, the orbit of a point z0 ∈ Ĉ is defined as

{
z0, R (z0) , R2 (z0) , . . . , Rn (z0) , . . .

}
.

A point z0 ∈ Ĉ, is called a fixed point of R(z) if it verifies that R(z) = z. Moreover,
z0 is called a periodic point of period p > 1 if it is a point such that R p (z0) = z0 but
Rk (z0) 
= z0, for each k < p. Moreover, a point z0 is called pre-periodic if it is not
periodic but there exists a k > 0 such that Rk (z0) is periodic.

There exist different types of fixed points depending on its associated multiplier
|R′(z0)|. Taking the associated multiplier into account, a fixed point z0 is called:

• superattractor if |R′(z0)| = 0,
• attractor if |R′(z0)| < 1,
• repulsor if |R′(z0)| > 1,
• and parabolic if |R′(z0)| = 1.

The fixed point operator of any iterative method on an arbitrary polynomial p(z) is a
rational function. The fixed points of this rational function that do not correspond to
the roots of the polynomial p(z) are called strange fixed points. On the other hand, a
critical point z0 is a point which satisfies that R′ (z0) = 0.
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The basin of attraction of an attractor α is defined as

A (α) =
{

z0 ∈ Ĉ : Rn (z0) →α, n→∞
}

.

The Fatou set of the rational function R, F (R), is the set of points z ∈ Ĉ whose orbits
tend to an attractor (fixed point, periodic orbit or infinity). Its complement in Ĉ is the
Julia set, J (R). That means that the basin of attraction of any fixed point belongs to
the Fatou set and the boundaries of these basins of attraction belong to the Julia set.

The fixed point operator associated to the family of methods (2) in the scalar case,
on a nonlinear function f (z) is

G(z) = z −
(

1 − 3

4

u(1 + βu)

1 + u(β + 3
2 )

)
f (z)

f ′(z)
, (5)

where u = f ′(y)− f ′(z)
f ′(z) and y is

y = z − 2

3

f (z)

f ′(z)
. (6)

By applying this operator on a generic polynomial p(z) = (z − a)(z − b), and by
using the Möebius map h(z) = z−a

z−b , whose properties are

(i) h (∞) = 1, (ii) h (a) = 0, (iii) h (b) = ∞,

the rational operator associated to the family of iterative schemes is finally

Op(z, β) = z4
(
8β − 3z2 + (4β − 6)z − 3

)
(8β − 3)z2 + (4β − 6)z − 3

. (7)

3.1 Study of the fixed points and their stability

It is clear that z = 0 and z = ∞ are fixed points of Op(z, β) (related to the roots a
and b, respectively, of the polynomial p(z)). On the other hand, we can see, by solving
the equation Op(z, β) = z, that z = 1 is a strange fixed point, which is associated
with the original convergence to infinity. Moreover, there are also another four strange
fixed points which correspond with the roots of the polynomial

q(z) = 3 + (9 − 4β)z + 12(1 − β)z2 + (9 − 4β)z3 + 3z4,

whose analytical expressions, depending on β, are:

ex1(β) = 1

12

(
−9 + 4β − √

9 + 8β(9 + 2β)

−
√

32β2 − 8β
√

9 + 8β(9 + 2β) + 18
(
−3 + √

9 + 8β(9 + 2β)
))

,
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ex2(β) = 1

12

(
−9 + 4β − √

9 + 8β(9 + 2β)

+
√

32β2 − 8β
√

9 + 8β(9 + 2β) + 18
(
−3 + √

9 + 8β(9 + 2β)
))

,

ex3(β) = 1

12

(
−9 + 4β + √

9 + 8β(9 + 2β)

−
√

−18
(

3 + √
9 + 8β(9 + 2β)

)
+ 8β

(
4β + √

9 + 8β(9 + 2β)
))

,

ex4(β) = 1

12

(
−9 + 4β + √

9 + 8β(9 + 2β)

+
√

−18
(

3 + √
9 + 8β(9 + 2β)

)
+ 8β

(
4β + √

9 + 8β(9 + 2β)
))

.

There exist relations between the strange fixed points and they are described in the
following result.

Lemma 1 The number of simple strange fixed points of operator Op (z, β) is five,
except in the following cases:

(i) If β = 0, then ex1(β) = ex2(β) = −1 that is not a fixed point, so there only
exist three simple strange fixed points.

(ii) If β = 9
5 , then ex3(β) = ex4(β) = 1, and as a consequence the family has three

strange fixed points, one of them of multiplicity three.

(iii) If β = 3
4

(
−3 − 2

√
2
)

or β = 3
4

(
−3 + 2

√
2
)

, then ex1(β) = ex3(β) and

ex2(β) = ex4(β) and there exist three strange fixed points, two of them double.

Moreover, for all values of the parameter β, ex1(β) = 1
ex2(β)

and ex3(β) = 1
ex4(β)

.

Related to the stability of that strange fixed points, the first derivative of Op(z, β)

must be calculated

Op′ (z, β) = 12z3(1 + z)2
(
3 + 6z + 3z2 − 8β − 4zβ − 8z2β + 8zβ2

)
(−3 − 6z − 3z2 + 4zβ + 8z2β

)2 . (8)

Taking into account that the methods of family (2) have order of convergence four and
the origin and ∞ correspond to the roots of p(z) from Möebius map, it is immediate
that the origin and ∞ are superattractive fixed points for every value of β.

The stability of the other fixed points is more complicated and will be shown in
a separate way. First of all, focussing the attention in the strange fixed point z = 1,
which is related to the original convergence to ∞, and the following result can be
shown.

Due to the complexity of the stability function of each one of the strange fixed
points, Op′ (exi , β), to characterize its domain analytically is not affordable. We will
use the graphical tools of software Mathematica in order to obtain the regions of
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Fig. 1 Stability region of z = 1

Fig. 2 Stability region of ex1(β) and ex3(β)

stability of each of them (those z ∈ C such that |Op′(z, β)| < 1), in the complex
plane. In Fig. 1, the stability region of z = 1 can be observed, whose shape is an
oval in the complex plane, symmetric respect to the real axis. In Fig. 2, the regions
of stability of ex1(β) and ex3(β) are shown (the ones of ex2(β) and ex4(β) are the
same respectively, as the points are conjugated). Taking into account these regions the
following result summarize the behavior of the strange fixed points.

Theorem 2 The strange fixed point z = 1 is super-attractor if β = 1.5 or if β is
inside the oval that appears in Fig. 1. On the other hand:

• The stability of ex1(β) and ex2(β) is the same. In particular, they are attractive if
β is inside the cardioid that appears in the left hand of Fig. 2.

• The stability of ex3(β) and ex4(β) is the same. In particular, they are attractive if
β is inside the oval that appears in the right hand of Fig. 2.

As a conclusion we can remark that the number and the stability of the fixed points
depend on the parameter β.

3.2 Study of the critical points and parameter spaces

In this section, the critical points will be calculated and the parameter spaces associated
to the free critical points will be shown. It is well known that there is at least one critical
point associated with each invariant Fatou component. The critical points of the family
are the solutions of Op′(z, β) = 0, where Op′(z, β) is described in (8).
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By solving this equation, it is clear that z = 0 and z = ∞ are critical points, which
are related to the roots of the polynomial p(z) and they have associated their own
Fatou component. Moreover, there exist critical points no related to the roots, these
points are called free critical points. Their expressions are:

cr0 = −1,

cr1(β) = 3 − 2β + 4β2 − 2
√

9β − 9β2 − 4β3 + 4β4

−3 + 8β

and

cr2(β) = 3 − 2β + 4β2 + 2
√

9β − 9β2 − 4β3 + 4β4

−3 + 8β
.

The relations between the free critical points are described in the following result.

Lemma 2 (a) If β = 0 or β = −3/2
(i) cr1 = cr2 = −1.

(b) If β = 1 or β = 3/2
(i) cr1 = cr2 = 1.

(c) For other values of β

(i) The family has three free critical points.

It is easy to see that cr0 = −1 is a pre-periodic point as it is the pre-image of the
fixed point related to the convergence to infinity, z = 1, and the other free critical
points are conjugated cr1(β) = 1/cr2(β). So, there are only two independent free
critical points and only one is not pre-periodic. Without loss of generality, we con-
sider in this paper the free critical point cr1(β). In order to find the best members of
the family in terms of stability, the parameter space corresponding to this independent
free critical point will be shown.

The study of the orbits of the critical points gives rise about the dynamical behavior
of an iterative method. In concrete, to determine if there exists any attracting strange
fixed point or periodic orbit, the following question must be answered: For which
values of the parameter, the orbits of the free critical points are attracting periodic
orbits? In order to answer this question we are going to draw the parameter space
[27]. In it, each point is associated to a complex value of parameter β, that is, to an
element of the family of iterative methods. When the critical point is used as an initial
estimation, for each value of the parameter, the color of the point tell us about the place
it has converged to: to a fixed point, to an attracting periodic orbit or even the infinity.

In Fig. 3, the parameter space associated to cr1(β) is shown. A point is painted
in cyan if the iteration of the method starting in z0 = cr1(β) converges to the fixed
point 0 (related to root a), in magenta if it converges to ∞ (related to root b) and in
yellow if the iteration converges to 1 (related to ∞). Moreover, it appears in red the
convergence, after a maximum of 2,000 iterations and with a tolerance of 10−6, to any
of the strange fixed points, in orange the convergence to 2-cycles, in light green the
convergence to 3-cycles, in dark red to 4-cycles, in dark blue to 5-cycles, in dark green
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Fig. 3 Parameter space
associated to the free critical
point cr1(β)

Fig. 4 Details of parameter space associated to the free critical point cr1(β), where there exist regions
with convergence problems

to 6-cycles, dark yellow to 7-cycles, and in white the convergence to 8-cycles. The
regions in black correspond to zones of convergence to other cycles. As a consequence,
every point of the plane which is neither cyan nor magenta is not a good choice of β

in terms of numerical behavior.
In Fig. 4 some details of the parameter spaces are shown. It can be seen that in this

region there exist values of β for which the iteration of cr1(β) converges to cycles,
strange fixed points or even to z = 1. In concrete, in the left hand it can be observed
two large circular zones: the yellow one corresponds to values of β for which z = 1
is (super)attractive and the red one is the region where the iteration of the free critical
point converges to some of the other strange fixed points.
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Fig. 5 Dynamical planes for different values of β in which there are no convergence anomalies

Fig. 6 Dynamical planes for different values of β in which there are no convergence anomalies

Once the values of the parameter where anomalies appear have been detected, the
next step consists on finding them in the dynamical planes. In these dynamical planes
the convergence to 0 appear in magenta, in cyan it appears the convergence to ∞ and
in black the zones with no convergence to the roots. First of all, in Figs. 5 and 6 the
dynamical planes associated with the values of β for which there is no convergence
problems, are shown.

Then, focussing the attention in the region shown in Fig. 4 it is evident that there
exist members of the family with complicated behavior. In Fig. 7, the dynamical planes
of some of this members are shown. In concrete, in the left hand appears the dynamical
plane of a member of the family with regions of convergence to any of the strange
fixed points, and in the right hand the dynamical plane of a member of the family with
regions of convergence to z = 1, which is related to the convergence to ∞, is shown.
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Fig. 7 Dynamical planes for different values of β

Fig. 8 Dynamical planes for different values of β for which there exist attracting cycles

Finally, in Figs. 8 and 9, some dynamical planes of members of the family with
convergence to different attracting cycles are shown.

4 Numerical results

To solve the equation of molecular interaction, (see [28])

uxx + uyy = u2, (x, y) ∈ [0, 1] × [0, 1]
u(x, 0) = 2x2 − x + 1, u(x, 1) = 2

u(0, y) = 2y2 − y + 1, u(1, y) = 2 (9)
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Fig. 9 Dynamical planes for different values of β for which there exist attracting cycles

we need to deal with a boundary value problem with a nonlinear partial differential
equation of second order. To estimate its solution numerically, we have used central
divided differences in order to transform the problem in a nonlinear system of equa-
tions, which is solved by using some elements of the proposed family (for specific
values of the parameter β) and also by known methods, as Newton’ and Sharma’s ones
([29]), which has order four and its iterative expression is

y(k) = x (k) − 2

3

[
F ′(x (k))

]−1
F

(
x (k)

)
,

x (k+1) = x (k) − 1

2

[
−I + 9

4

[
F ′(y(k))

]−1
F ′ (x (k)

)

+3

4

[
F ′(x (k))

]−1
F ′ (y(k)

)] [
F ′(x (k))

]−1
F

(
x (k)

)
.

The discretization process yields to the nonlinear system of equations,

ui+1, j − 4ui, j + ui−1, j + ui, j+1 + ui, j−1

− h2u2
i, j = 0 i = 1, . . . , nx, j = 1, . . . , ny, (10)

where ui, j denotes the estimation of the unknown u(xi , y j ), xi = ih with i =
0, 1, . . . , nx , y j = jk with j = 0, 1, . . . , ny, are the nodes in both variables, being
h = k = 1

nx = 1
ny .

In this case, we fix nx = ny = 4, so a mesh of 5 × 5 is generated. As the boundary
conditions give us the value of the unknown function at the nodes (x0, y j ), (x4, y j )

for all j and also at (xi , y0), (xi , y4) for all i , we have only nine unknowns, that are
renamed as:

x1 = u1,1, x2 = u2,1, x3 = u3,1,
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Table 1 Numerical tests

x(0) = (1, . . . , 1) x(0) = (5, . . . , 5) x(0) = 25(1,−1, . . . , −1, 1)

iter

Newton 9 11 >103

Sharma 5 6 >103

Jarratt 5 6 >103

β = 3
8 5 6 10

β = − 1
6 5 6 >103

β = −1 5 6 176

ACOC

Newton 1.9999 2.0000 –

Sharma 3.9962 3.9981 –

Jarratt 3.9964 3.9988 –

β = 3
8 4.0519 4.0184 4.0402

β = − 1
6 3.9963 3.9986 –

β = −1 3.9960 3.9976 –

‖F(x(k))‖
Newton 6.45e−828 2.06e−1161 –

Sharma 1.56e−1531 7.84e−1899 –

Jarratt 5.05e−1657 1.74e−2007 –

β = 3
8 1.48e−2007 2.61e−2007 2.78e−2007

β = − 1
6 6.42e−1603 1.98e−2007 –

β = −1 2.6e−1463 1.09e−1612 3.64e−1562

Table 2 Approximated
solutions

α1 α2

u1,1 1.0259117... −9.2167742…

u2,1 1.2097139... −16.653894…

u3,1 1.5167030... −8.2014229…

u1,2 1.2097139... −16.653894…

u2,2 1.3877038... −32.862868…

u3,2 1.6258725... −15.322839…

u1,3 1.5167030... −8.2014229…

u2,3 1.6258725... −15.322839…

u3,3 1.7642995... −7.5527268…

x4 = u1,2, x5 = u2,2, x6 = u3,2,

x7 = u1,3, x8 = u2,3, x9 = u3,3.
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So, the system can be expressed as

F(x) = Ax + φ(x) − b = 0, F ′(x) = A + 2h2diag(x1, x2, . . . , x9)

where

A =
⎛
⎝ M −I 0

−I M −I
0 −I M

⎞
⎠ , being M =

⎛
⎝ 4 −1 0

−1 4 −1
0 −1 4

⎞
⎠ ,

φ(x) = h2(x2
1 , x2

2 , . . . , x2
9 )T ,

I is the 3 × 3 identity matrix and b = ( 7
4 , 1, 27

8 , 1, 0, 2, 27
8 , 2, 4

)T
. Now, we will

check the performance of the methods by means of some numerical tests, by using
variable precision arithmetics of 2,000 digits of mantissa. These tests have been made
by using the stopping criterium ‖F(x (k+1))‖+‖x (k+1) − x (k)‖ < 10−500. In this way
we assure that, in case of convergence, we have converged to a solution. In Table 1,
we show the numerical results obtained for the problem of molecular interaction (10),
with different initial estimations. We show, for each method, the number of iterations,
the residual of the function at the last iteration, ‖F(x (k+1))‖ and the approximated
computational order of convergence AC OC defined in the Introduction. The value
of AC OC that appears in Table 1 is the last coordinate of vector AC OC when the
variation between its values is small.

In Table 1, we notice that the performance of the selected elements of the proposed
family is at least equal and sometimes better than the classical known schemes. The
elements of the class that showed good stability in the dynamical study (most of
them around 0, like β = ± 1

6 ) hold very good behavior. In fact, the best results are
obtained for β = 3

8 , which simplifies the error equation and presents a basin of good
starting points wider than the rest of methods, as we can observe in the last column of
Table 1, where the initial estimation is very far from the solution α1 of the problem,
which is approximately shown in Table 2. Although all the methods converge to α1
for x (0) = (1, . . . , 1) and x (0) = (5, . . . , 5), a second solution α2 of the nonlinear
system appears when x (0) = (25,−25, . . . ,−25, 25) for β = −1.

5 Conclusions

A family of Jarratt-type iterative root-finding algorithms has been extensively studied
in terms of stability and convergence. All the fixed points has been calculated and their
stability has been also analyzed. Moreover, by means of the parameter space, some
anomalies such us convergence to the strange fixed points, convergence to cycles
or even chaotical behavior has been found. Some dynamical planes are presented
validating the results given. The main conclusion drawn from this study is that the
stability of a member of the family depends clearly on the value of the parameter
that defines it. By applying stable selected elements of this family, we obtain good
numerical results solving the equation of molecular interaction.
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